checkpoint

This commit is contained in:
2025-11-08 09:55:28 +00:00
parent bdd0d26acb
commit df2bf7058c
4 changed files with 456 additions and 164 deletions

202
main.py
View File

@@ -5,9 +5,10 @@ from typing import Dict, List, Tuple, Optional, Any
import networkx as nx
from flask import Flask, render_template, request
from pydantic import BaseModel, Field
# from plus import Items, Machines, Recipes, Recipe
from vanilla import Items, Machines, Recipes, Recipe, RawResources
from plus import Items, Machines, Recipes, Recipe, RawResources
# from vanilla import Items, Machines, Recipes, Recipe, RawResources
from rich import print
import matplotlib.pyplot as plt
app = Flask(__name__)
@@ -34,14 +35,24 @@ class Production(BaseModel):
class ProductionChain:
def __init__(self):
self.recipe_map: Dict[Items, list[Recipes]] = defaultdict(list)
self.item_to_recipies: Dict[Items, list[Recipes]] = defaultdict(list)
for r in Recipes:
for o in r.value.outputs:
self.recipe_map[o].append(r.value)
self.item_to_recipies[o].append(r.value)
self.recipe_name_to_obj: Dict[str, Recipe] = {}
for r in Recipes:
self.recipe_name_to_obj[r.value.name] = r.value
def get_recipe(self, item: Items, recipe_map: Dict[Items, list[Recipes]]) -> Optional[Recipe]:
self.demand: Dict[Items, float] = defaultdict(float)
self.production: Dict[Items, float] = defaultdict(float)
self.raw_resources: Dict[Items, float] = defaultdict(float)
self.production_chain: Dict[str, float] = defaultdict(float)
self.excess: Dict[Items, float] = defaultdict(float)
self.byproduct: Dict[Items, float] = defaultdict(float)
def get_recipe(self, item: Items) -> Optional[Recipe]:
# TODO: make logic for priority selection of recipes
return recipe_map.get(item, (None,))[0]
return self.item_to_recipies.get(item, (None,))[0]
def calculate_excess(self, production: Dict[Items, float], demand: Dict[Items, float], raw_resources: Dict[Items, float]):
excess = defaultdict(float)
@@ -76,7 +87,7 @@ class ProductionChain:
item = queue.popleft()
if item == Items.Silica:
print("silica")
recipe = self.get_recipe(item, self.recipe_map)
recipe = self.get_recipe(item)
if item in RawResources:
raw_resources[item] += demand[item] - raw_resources[item]
continue
@@ -111,165 +122,28 @@ class ProductionChain:
print("byproduct:", byproduct)
print("raw resources:", raw_resources)
print("production chain:", production_chain)
self.demand = demand
self.production = production
self.raw_resources = raw_resources
self.production_chain = production_chain
self.excess = excess
self.byproduct = byproduct
# self.generate_graph(production_chain, production, raw_resources, excess, byproduct)
return production_chain
def compute_chain(targets: Dict[Items, float], preferred_by_output: Optional[Dict[Items, str]] = None) -> Tuple[Dict[str, float], List[dict], Dict[str, float], Dict[str, float]]:
"""
Given desired output rates (item -> units/min), compute:
- required raw input rates (raw item -> units/min)
- a flat list of steps with building counts and per-building utilization
- total production rates (echo of targets summed if multiple entries per item)
- unused byproducts (items/min) produced by multi-output recipes but not consumed or targeted
Uses the Recipes enum and Items objects.
Now supports alternate recipes: when multiple recipes produce the same output item,
a selection heuristic is used unless an explicit preference is configured.
preferred_by_output: optional mapping from output Item -> recipe name to force selection for that item.
"""
# Build a mapping from output item -> list of recipes that produce it
output_to_recipes: Dict[Items, List[Recipe]] = {}
for r in Recipes:
recipe = r.value
for out_item in recipe.outputs.keys():
output_to_recipes.setdefault(out_item, []).append(recipe)
# Optional explicit preferences: map output Item -> recipe name to prefer
PREFERRED_RECIPE_BY_OUTPUT: Dict[Items, str] = preferred_by_output or {}
# Heuristic to select a recipe when multiple alternatives exist
def select_recipe_for(item: Items) -> Optional[Recipe]:
candidates = output_to_recipes.get(item, [])
if not candidates:
return None
# If explicit preference exists and matches a candidate, use it
pref_name = PREFERRED_RECIPE_BY_OUTPUT.get(item)
if pref_name:
for c in candidates:
if c.name == pref_name:
return c
# Otherwise pick the candidate with the highest per-building output for this item
# Tie-breaker 1: smallest total input per unit of this output
# Tie-breaker 2: deterministic by name
def score(c: Recipe) -> Tuple[float, float, str]:
per_build_out = c.outputs.get(item, 0.0)
total_input = sum(c.inputs.values())
# Lower input per unit is better; we express as (total_input/per_build_out)
# Protect against division by zero
eff = float('inf') if per_build_out <= 0 else (total_input / per_build_out)
return (per_build_out, -eff, c.name)
return sorted(candidates, key=score, reverse=True)[0]
# Aggregate demands for each item
demand: Dict[Items, float] = {}
def add_demand(item: Items, rate: float) -> None:
if rate == 0:
return
demand[item] = demand.get(item, 0.0) + rate
for item, rate in targets.items():
add_demand(item, rate)
# Work lists
steps: List[dict] = []
raw_requirements: Dict[str, float] = {}
# Track produced and consumed rates to calculate unused byproducts
produced: Dict[Items, float] = {}
consumed: Dict[Items, float] = {}
# Expand demanded craftable items into their inputs until only raw remain
while True:
craftable_item = next(
(i for i, r in demand.items() if r > 1e-9 and i in output_to_recipes),
None,
)
if craftable_item is None:
break
needed_rate = demand[craftable_item]
recipe = select_recipe_for(craftable_item)
if recipe is None:
# Should not happen because craftable_item is in output_to_recipes,
# but guard anyway: treat as raw if selection failed.
demand[craftable_item] = 0.0
raw_requirements[craftable_item.value.name] = raw_requirements.get(craftable_item.value.name, 0.0) + needed_rate
continue
per_building_output = recipe.outputs[craftable_item]
# Buildings needed
buildings = needed_rate / per_building_output if per_building_output > 0 else 0.0
buildings_ceiled = ceil(buildings - 1e-9)
utilization = 0.0 if buildings_ceiled == 0 else buildings / buildings_ceiled
# Record the step (as display-friendly strings)
steps.append({
"item": craftable_item.value.name,
"recipe": recipe.name,
"building": recipe.building.value.name,
"target_rate": needed_rate,
"per_building_output": per_building_output,
"buildings_float": buildings,
"buildings": buildings_ceiled,
"utilization": utilization,
})
# Consume this demand and add input demands
demand[craftable_item] -= needed_rate
scale = buildings # exact fractional buildings to match demand exactly
# Account for all outputs produced by this recipe at the chosen scale
for out_item, out_rate_per_build in (recipe.outputs or {}).items():
produced[out_item] = produced.get(out_item, 0.0) + out_rate_per_build * scale
# Add input demands and track consumption
for in_item, in_rate_per_build in (recipe.inputs or {}).items():
rate_needed = in_rate_per_build * scale
add_demand(in_item, rate_needed)
consumed[in_item] = consumed.get(in_item, 0.0) + rate_needed
# What's left in demand are raw items
for item, rate in demand.items():
if rate <= 1e-9:
continue
raw_requirements[item.value.name] = raw_requirements.get(item.value.name, 0.0) + rate
# Merge steps for same item/building
merged: Dict[Tuple[str, str], dict] = {}
for s in steps:
key = (s["item"], s["building"])
if key not in merged:
merged[key] = {**s}
else:
m = merged[key]
m["target_rate"] += s["target_rate"]
m["buildings_float"] += s["buildings_float"]
m["buildings"] += s["buildings"]
total_buildings = m["buildings"]
m["utilization"] = 0.0 if total_buildings == 0 else m["buildings_float"] / total_buildings
merged_steps = sorted(merged.values(), key=lambda x: (x["building"], x["item"]))
# Echo total outputs (same as targets possibly aggregated), as item-name -> rate
total_outputs: Dict[str, float] = {}
for item, rate in targets.items():
total_outputs[item.value.name] = total_outputs.get(item.value.name, 0.0) + rate
# Compute unused byproducts: produced but not consumed and not part of explicit targets
unused_byproducts: Dict[str, float] = {}
for item, qty_produced in produced.items():
qty_consumed = consumed.get(item, 0.0)
qty_targeted = targets.get(item, 0.0)
unused = qty_produced - qty_consumed - qty_targeted
if unused > 1e-9:
unused_byproducts[item.value.name] = unused
return raw_requirements, merged_steps, total_outputs, unused_byproducts
def generate_graph(self, production_chain, production, raw_resources, excess, byproduct):
nx_graph = nx.DiGraph()
for recipe in production_chain:
nx_graph.add_node(recipe)
for inp in self.recipe_name_to_obj[recipe].inputs.keys():
if inp in RawResources:
nx_graph.add_edge(recipe, inp.name)
continue
input_recipe = self.get_recipe(inp)
nx_graph.add_edge(recipe, input_recipe.name)
nx.draw_spring(nx_graph, with_labels=True, font_weight='bold')
plt.show()
@app.route("/", methods=["GET"])
@@ -427,4 +301,4 @@ if __name__ == "__main__":
# For local dev: python main.py
# app.run(host="0.0.0.0", port=5000, debug=True)
prod_chain = ProductionChain()
prod_chain.compute_chain({Items.FusedModularFrame: 1.5})
prod_chain.compute_chain({Items.ModularFrame: 1.5})